Abstract
Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) has been a potential target in the management of pathophysiology and clinical sequelae of atherosclerosis. LR12 peptide effectively blocks ligand-TREM-1 interaction; however, the short half-life of LR12 is a major hurdle in its translational application in atherosclerosis management warranting new methods for sustained bioavailability in clinical applications. The present study reports a novel method of packing the coding sequence of LR12 in a lentiviral system to ensure a sustained expression and bioavailability for effective TREM-1 inhibition. Lentivirus vector systems (LV-LR12 and LV-SP) for the expression of LR12 peptide and SP (scrambled peptide) were successfully designed, constructed, and tested in vitro in smooth muscle cells (SMCs). Viral amounts obtained were 703.6 ± 145.12 and 609.3 ± 145.93ng/ml p24 for LV-LR12 and LV-SP, respectively which correspond to ~ 107IFU/ml for both vectors. Dot blot assay revealed significantly increased expression of LR12-FLAG and SP-FLAG in 125μg total protein which was doubled in 250μg protein with respect to un-transduced SMCs suggesting the sustained release of LR12/SP as confirmed by ELISA. Cellular expression of LR12-FLAG and SP-FLAG displayed 8.44-fold and 7.55-fold increase, respectively compared to the control SMCs. The findings demonstrated a promising strategy for packing the LR12 coding sequence in lentiviral vector for TREM-1 inhibition for the management of atherosclerosis and other inflammatory diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.