Abstract

Extracorporeal Shock Wave Lithotriptors are very popular for the treatment of urinary stones all over the world. They depend basically upon either X-ray fluoroscopy or ultrasound scans to detect the stones before therapy begins. To increase the effectiveness of treatment this study took advantage of both X-ray and ultrasound to develop a dual stone locating system with image processing modules. Its functions include the initial stone locating mode with stone detection by fluorescent images and the follow-up automatic stone tracking mode made by constant ultrasound scanning. The authors have integrated both apparatus and present the operating principles for both modes. The system used two in vitro experiments to justify its abilities of stone location in all procedures.

Highlights

  • Extracorporeal Shock Wave Lithotriptors (ESWLs) have been widely utilized in the urology departments of hospitals all over the world

  • We performed two in vitro experiments to demonstrate the ability of the dual stone locating system

  • The phantom was mounted on the ESWL bed and placed inside the exposure range of the X-ray

Read more

Summary

Introduction

Extracorporeal Shock Wave Lithotriptors (ESWLs) have been widely utilized in the urology departments of hospitals all over the world. Their use in noninvasive treatment [1] has gained credit from the majority of doctors and patients in urology. Most of the currently operational ESWLs locate stones (calculi) manually with a C-arm (X-ray) or ultrasound (US) scanner. When the stone location is done, the lithotriptor thereafter strikes with thousands of shock waves focusing at a spatially fixed focal area (F2) where the stone presumably exists and is subsequently shattered into pieces. The prognoses by ESWLs vary in different studies. In 2010 a large-scale research studied more than

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.