Abstract

The CUORE detector will be made of 988 TeO2 crystals and will need a base temperature lower than 10 mK in order to meet the performance specifications. To cool the CUORE detector a large cryogen-free cryostat with five pulse tubes and one specially designed high-power dilution refrigerator has been designed. The detector assembly has a total mass of about 1.5 ton and uses a vibration decoupling suspension system. Because of the stringent requirements regarding radioactivity, about 12 tons of lead shielding need to be cooled to 4 K and below, and only a limited number of construction materials are acceptable. The eight retractable radioactive sources for detector calibration and about 2600 signal wires add further complexity to the system. The many stringent and contrasting requirements together with the overall large size made the design of the CUORE cryogenic system a real mechanical and cryogenic engineering challenge. The cryogenic system is expected to be fully operational in the Gran Sasso Laboratory in July 2013. We report here about the current status of the cryogenic system construction, which has started about one year.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.