Abstract

In topological photonics, there is a class of designing approaches that usually tunes topological phase from trivial to non-trivial in a magneto-optical photonic crystal by applying an external magnetic field to break time reversal symmetry. Here we theoretically realize topological phase transition by rotating square gyro-electric rods with broken time reversal symmetry. By calculating band structures and Chern numbers, in a simple square-lattice photonic crystal, we demonstrate the topological phase transition at a specific orientation angle of the rods. Based on the dependence of topological phase on the orientation angle, we propose several terahertz devices including an isolator, circulator and splitter in a 50x50 reconfigurable rod array by locally controlling topological phases of the rods. These results may have potential applications in producing reconfigurable terahertz topological devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.