Abstract

Immunonanocapsules were synthesized by conjugation to lipid nanocapsules (LNC) of whole OX26 monoclonal antibodies (OX26 MAb) directed against the transferrin receptor (TfR). The TfR is overexpressed on the cerebral endothelium and mediates the transcytosis mechanism. Fab’ fragments, known for their reduced interaction with the reticuloendothelial system, were also conjugated to LNC. This coupling was facilitated by the incorporation of lipid PEG 2000 functionalized with reactive-sulfhydryl maleimide groups (DSPE–PEG 2000–maleimide) into LNC shells by a post-insertion procedure, developed initially for liposome pegylation. An interfacial model using the dynamic rising drop technique helped determine the parameters influencing the DSPE–PEG 2000–maleimide insertion and the quality of the anchorage. Heat was essential to promote both an important and stable adsorption of DSPE–PEG 2000–maleimide onto LNC. OX26 MAb were thiolated to react with maleimide functions whereas thiol residues on Fab’ fragments were used directly. The number of ligands per nanocapsule was adjusted according to their initial quantity in the coupling reaction mixture, with densities from 16 to183 whole antibodies and between 42 and 173 Fab’ fragments per LNC. The specific association of immunonanocapsules to cells overexpressing TfR was thus demonstrated, suggesting their ability to deliver drugs to the brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.