Abstract
Purpose – The purpose of this paper is to minimize the optimization parameter number of synchronous reluctance machine (SynRM) and permanent magnet (PM) assisted SynRM, and compare their relative merits with interior permanent magnet (IPM) machine for electric vehicle applications, in terms of electromagnetic performance and material cost. Design/methodology/approach – The analysis of electromagnetic performance is based on finite element analysis, by using software MAXWELL. The genetic algorithm is utilized for optimization. Findings – The rotor design of SynRM can be significantly simplified by imposing some reasonable conditions. The number of rotor design parameters can be reduced to three. The electromagnetic performance of SynRM is much poorer than that of IPM, although the material cost is much cheaper, approximately one-third of IPM. The ferrite-SynRM is competitive and even better than IPM especially for high electric loading, in terms of torque capability, torque-speed characteristic, power factor, threshold speed and efficiency. In addition, ferrite-assisted SynRM has great advantage over IPM in material cost, 55 percent cheaper. The performance of NdFeB-assisted SynRM is close to IPM in terms of torque capability, torque-speed characteristic, power factor, torque ripple and efficiency. The material cost of NdFeB-assisted SynRM is ∼25 percent lower than IPM. Originality/value – Some conditions, which can simplify the optimization of SynRM rotor, are discussed. The electromagnetic performances and material costs of SynRM, ferrite-assisted, NdFeB-assisted SynRMs and IPM are quantitatively compared and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.