Abstract

Introduction:The objective of the present study was to design ferrous fumarate (FF) sustained release (SR) pellets using of cow ghee (CG) as an important hot-melt coating (HMC) agent.Materials and Methods:The pellets were coated by HMC technique using CG and ethyl cellulose composition by conventional coating pan without the use of spray system. FF formulated as pellets and characterized with regard to the drug content and physico-chemical properties. Stability studies were carried out on the optimized formulation for a period of 6 months at 40 ± 2°C and 75 ± 5% relative humidity.Results:Pellets with good surface morphology and smooth texture confirmed by stereo micrographs. HMC is easy, efficient, rapid and simple method since virtually no agglomeration seen during coating. In-vitro release from pellets at a given level of coating and for present pellet size was dependent upon the physico-chemical property of the drug and mostly aqueous solubility of the drug. The selection of optimized FF formulation was confirmed by comparing percent cumulative drug release with theoretical release profile. Formulation F2 had difference factor (f1) and similarity factor (f2) values was found to be 5 and 66 respectively. F2 showed SR of drug for 8 h with cumulative per cent release of 98.03 ± 4.49%. Release kinetics indicates approximately zero order release pattern. HMC pellets were stable during the course of stability study.Conclusions:By means of HMC using CG and ethyl cellulose, SR pellets containing FF were successfully prepared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.