Abstract

The development of high-contrast stimulus-responsive materials with excited triplet emission is of great significance for anti-counterfeiting, sensor and memory applications, but remains a challenge. Here, we report a strategy for the rational design of stimulus-responsive phenothiazine derivatives with triplet-related dual emissions and high-contrast mechanochromism guided by Polymorph Prediction. The designed phenothiazine derivatives have the characters of simple structures, a facile synthetic procedure, and a good crystalline nature. We found that the crystals of those derivatives with the potential to form both quasi-axial (ax) and quasi-equatorial (eq) conformations could undergo conformation transition and show significant emission difference (Δλem >100 nm) under mechanical force. Meanwhile, all these phenothiazine derivatives exhibit aggregation-induced emission and emit room-temperature phosphorescence or thermally activated delayed fluorescence. The significant luminescent change of these materials under different stimuli gives them promise for applications in encryption and anti-counterfeiting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.