Abstract

In the uncoupled shared steering architecture based on the steering-by-wire (SBW) system, direct access to road feel and automation-related information is unavailable to the driver. To address this problem, this paper proposes a steering wheel torque feedback model that considers human-machine interaction information. First, the model predictive control (MPC) is adopted in lateral vehicle control by automation. Then a fuzzy control-based control authority allocation model is applied to assign the control authority weight between the human driver and automation according to the value of the Path Lateral Hazard (PLH) Factor and the Driver’s Intent Evaluation (DIE) Factor. These two factors reflect the probability of lateral vehicle collision and the intensity of the driver’s driving intention, respectively. Next, the road feel feedback torque and the human-machine interface (HMI) feedback torque is incorporated in the steering wheel feedback torque model to enhance the driver’s experience in SBW vehicles and trust in the automation. The HMI feedback torque is designed to provide human drivers with information on control authority weight variation and desired angle deviation between the human driver and automation. Simulation and experiment results suggest that the proposed uncouple shared control method can accelerate driver acceptance of automation and provide the driver with a more intuitive steering experience.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call