Abstract

This paper focused on the design and optimization of ridge filter-based intensity-modulated proton therapy (IMPT), and its potential applications for FLASH. Differing from the standard pencil beam scanning (PBS) mode, no energy/layer switching is required and total treatment time can be shortened. Unique dose-influence matrices were generated as a proton beam traverses through slabs of different thicknesses (i.e., modulation by different layers). To establish the references for comparison, conventional IMPT plans (single field) were created using a large-scale nonlinear solver. The spot weights from the reference IMPT plans were used as inputs for optimizing the design of ridge filters. Two designs were evaluated: model A (static) and model B (dynamic). The ridge filter designs were first verified (by GEANT4 simulation) in a water phantom and then in an H&N case. A direct comparison was made between the GEANT4 simulation results of two models and their respective references, with regard to plan quality, dose-averaged dose rate, and total treatment time. In both the water phantom and the H&N case, two models are able to modulate dose distributions with high conformity, showing no significant difference relative to the reference plans. Dose rate-volume histograms suggest that in order to achieve a dose rate of 40Gy/s over 90% PTV, the beam intensity needs to be 2.5×1011 protons/s for both models. For a fraction dose of 10Gy, the total treatment time (including both irradiation time and dead time) can be shortened by a factor of 4.9 (model A) and 6.5 (model B), relative to the reference plans. Two proposed designs (both static and dynamic) can be used for PBS-IMPT requiring no layer switching. They are promising candidates for FLASH-IMPT capable of reducing treatment time and achieving high dose rates while maintaining dose conformity simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call