Abstract

This study presents a hybrid method based on generalised predictive control (GPC) and a proposed new hybrid shuffled frog leaping (NHSFL) algorithm to design stabilising signals to damp the multi-machine power system low-frequency oscillations. A linearised model predictive controller based on GPC is designed in which the proposed NHSFL algorithm is employed for optimising the cost function of the GPC. The numerical results are presented on a two-area four-machine and a five-area 16-machine power system. The effectiveness of the designed controllers is shown by considering various operating conditions. The proposed approach, which is called as GPC-NHSFL, is compared with a classical-based method, GPC algorithm and GPC-based standard SFL algorithm (GPC-SFL). The simulation results show the superiority and capability of the proposed approach to enhance power systems damping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.