Abstract

This study focused on the design of a specimen fixture which can be installed on the end of a conventional transmission bar so that shear testing (punch and double-notch) can be conducted with any conventional split-Hopkinson apparatus. The research was conducted by using the finite element method in Abaqus/CAE with 6061-T651 Aluminum as the specimen material. The research successfully determined the effect of the fixture’s geometry and dimensions on the split-Hopkinson shear bar testing results. The optimum double-notch fixture provides great accuracy, having only a shear stress value difference of 1.49% with the original setup, while attaining force equilibrium after only 70 μs. The punch fixture, however, could only reach force equilibrium after 100 μs, thus providing too few observable data. Future work on the punch fixture is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.