Abstract

In this paper, we propose a systematic procedure for designing spherical lattice (space-time) codes. By employing stochastic optimization techniques we design lattice codes which are well matched to the fading statistics as well as to the decoder used at the receiver. The decoders we consider here include the optimal albeit of highest decoding complexity maximum-likelihood (ML) decoder, the suboptimal lattice decoders, as well as the suboptimal lattice-reduction-aided (LRA) decoders having the lowest decoding complexity. For each decoder, our design methodology can be tailored to obtain low error-rate lattice codes for arbitrary fading statistics and signal-to-noise ratios (SNRs) of interest. Further, we obtain fundamental lower bounds on the error probabilities yielded by lattice and LRA decoders and characterize their asymptotic behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call