Abstract

Hole-assisted fibers have been proposed for a number of applications, including low-bend-loss access transmission. Suppression of higher-order modes is essential in these designs, and is explained here as the result of index-matched coupling between core and cladding modes. This physical principle is shown to explain previous empirically optimized designs, and enables intuitive generalizations. The improved tradeoff between bend loss and suppression of higher-order modes in these designs is discussed. Novel solid and microstructure fiber designs with suppressed higher-order modes illustrate these principles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.