Abstract

Social behavior, as compared to the egoistic and rational behavior, is known to be more beneficial to groups of subjects and even to individual members of a group. For this reason, social norms naturally emerge as a product of evolution in human and animal populations. The benefit of the social behavior makes it also an interesting subject in the field of artificial agents. Social interactions implemented in computer agents can improve their personal and group performance. In this study we formulate design principles of social agents and use them to create social computer agents. To construct social agents we take two approaches. First, we construct social computer agents based on our understanding of social norms. Second, we use an evolutionary approach to create social agents. The social agents are shown to outperform agents that do not utilize social behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.