Abstract

Abstract Precise pointing accuracy and rapid maneuvering are two key features for attitude control missions of small spacecraft. Control moment gyroscopes (CMGs) are applied as ideal actuator for large torque output capability but are usually limited due to the problem of inherent mechanical singularity. This paper proposes a robust attitude control methodology, based on Sliding Mode Control (SMC) techniques, in presence of CMG practical restrictions and disturbances. Two second-order SMC techniques are designed, to guarantee accuracy and limited convergence time. Moreover, attitude control torques are generated by means of four single gimbal CMGs in pyramidal configuration, considering the design of an experimental testbed. The effectiveness of the proposed methodologies are shown in simulations, for different mission scenarios, including singularity points.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call