Abstract

A sliding mode guidance law with dynamic delay and impact angle constraints is designed for the relative motion between the missile and the target in the intercepting plane. First of all, the missile’s first order dynamic delay is involved into the system model to design the guidance law based on sliding mode variable dynamic method. Secondly, the target’s maneuvering is taken as the system disturbance, and a non-homogeneous disturbance observer is applied to estimate such maneuvering in finite time rapidly, which, through dynamic compensation, realizes the missiles precision attack to targets of different maneuvering at a desired line-of-sight (LOS) angle. Finally, numerical simulations are performed to demonstrate the effectiveness of the designed guidance law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.