Abstract

The Electrochemical nitrogen reduction reaction (ENRR) can be used to solve environmental problems as well as energy shortage. However, ENRR still faces the problems of low NH3 yield and low selectivity. The NH3 yield and selectivity in ENRR are affected by multiple factors such as electrolytic cells, electrolytes, and catalysts, etc. Among these catalysts are at the core of ENRR research. Single-atom catalysts (SACs) with intrinsic activity have become an emerging technology for numerous energy regeneration, including ENRR. In particular, regulating the microenvironment of SACs (hydrogen evolution reaction inhibition, carrier engineering, metal-carrier interaction, etc.) can break through the limitation of intrinsic activity of SACs. Therefore, this Review first introduces the basic principles of NRR and outlines the key factors affecting ENRR. Then a comprehensive summary is given of the progress of SACs (precious metals, non-precious metals, non-metallic) and diatomic catalysts (DACs) in ENRR. The impact of SACs microenvironmental regulation on ENRR is highlighted. Finally, further research directions for SACs in ENRR are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.