Abstract

Delayed Product Differentiation (DPD) can reduce the manufacturing complexities arising due to the proliferation of products variety. A new optimization model constructs the optimum layout of delayed differentiation assembly lines for a mix of products to be manufactured by the same system and optimizes the position of the differentiation points. This model employs a classification tool (Cladistics) used in biological analysis and modifies it for use in planning DPD assembly lines configurations in order to incorporate the assembly precedence constraints, required production rates of different product variants and existing production capacity of work stations. The optimum layout configuration ensures that the quantities required of different products are produced on the same line; while achieving balance, minimizing duplication of stations and maximizing the overall system utilization. The developed model has been applied to a group of automobile engine accessories normally assembled on different lines. The use of Cladistics to analyze product variants that are candidates for delayed assembly is an original approach for designing the assembly line layout and identifying the best differentiation points. It also helps rationalize the design of product variants and their features to further delay their assembly differentiation and achieve economy of scale without affecting their functionality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call