Abstract
In a silicon hetero-interface photodetector, Si is used as the multiplication material to provide avalanche gain, while InGaAs is used as the absorption material. High quantum efficiency, high gain-bandwidth product, and low noise detection of wavelengths between 1.0 and 1.6 mm can be achieved in this way. We derive expressions for the frequency response for these detectors, present possible design variations, and analyze their performance. The effects of parasitics, transit time, and RC roll-off on frequency response are investigated and the 3-dB bandwidth and gain bandwidth product are calculated. Particular attention is paid to a 10 Gbit/s APD and we show that that a 3-dB bandwidth of 10 GHz and a gain-bandwidth product in excess of 400 GHz should be possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.