Abstract

Signal extraction methods are becoming increasingly popular due to lower computational demands and less restrictive requirements than source separation algorithms. Many existing signal extraction algorithms extract interesting signals based on some known features of the sources. However, immediate extraction of the desired signal is not guaranteed, leading to inefficient and ad hoc deflation techniques.We present a design strategy for efficient signal extraction algorithms. First, by incorporating some amount of prior information in the form of a guess of either the autocorrelation function or the mixing column of the desired source, immediate identification of the desired extraction filter is guaranteed. Second, for a parameterized mixing system new techniques for the design and evaluation of signal extraction algorithms have been developed. These techniques are used to ensure immediate extraction of the desired signal by exploiting knowledge on physical parameters.The design procedure is flexible in the use of a priori information and leads to extraction algorithms that are robust to noise, deal with incomplete prior information, and handle modeling errors. Furthermore, the extraction algorithms can be used to identify extraction filters with different objectives. The design procedure and the properties of the extraction algorithms are evaluated by examples and experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.