Abstract

This paper addresses the design of sigma-delta modulators with arbitrary signal and noise transfer functions using a genetic algorithm (GA)-based search method. The objective function is defined to include the difference D between the magnitude of the frequency responses of the designed transfer functions and the ideal one, the quantizer gain lambdacritical for which the poles of the modulator start moving out of the unit circle, and the spread of the coefficients S. Stability can be improved by reducing lambdacritical while a smaller S reduces the implementation complexity. A GA searches for poles/zeros of the transfer functions to minimize the objective function D+w1*lambdacritical+w2*S, where w1 and w2 are two weighing factors. Numerical results demonstrate the effectiveness of the proposed method

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.