Abstract

An active structure of a morphing wing designed for subsonic cruise flight conditions is composed of three principal subsystems: (1) flexible extrados, (2) rigid intrados, and (3) an actuator group located inside the wing box. The four-ply laminated composite flexible extrados is powered by two individually controlled shape memory alloy (SMA) actuators. Fulfilling the requirements imposed by the morphing wing application to the force-displacement characteristics of the actuators, a novel design methodology to determine the geometry of the SMA active elements and their adequate assembly conditions is presented. This methodology uses the results of the constrained recovery testing of the selected SMA. Using a prototype of the morphing laminar wing powered by SMA actuators, the design approach proposed in this study is experimentally validated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.