Abstract

To improve the tracking capability and sensorless estimation accuracy of a permanent magnet linear synchronous motor (PMLSM) control system, a sensorless control system based on a continuous terminal sliding mode controller (CT-SMC) and fuzzy super-twisted sliding mode observer (F-ST-SMO) was designed. Compared with a conventional slide mode control, CT-SMC can reach the equilibrium point in limited time to ensure the continuity of control and achieve fast tracking of reference speed. Based on the PMLSM design of F-ST-SMO, a super-twisted sliding mode algorithm is used to replace the traditional first order sliding mode algorithm. Meanwhile, fuzzy rules are introduced to adjust the sliding mode gain adaptively, which replaces the fixed gain of traditional SMO and reduces chattering of the system. Finally, the effectiveness and superiority of the designed control system are proven by simulation and experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call