Abstract

A density-based topology optimization approach is used to optimize the cooling power and efficiency (coefficient of performance) of thermoelectric coolers by spatially distributing two different thermoelectric materials in a two dimensional design space. With basis in three numerical examples we identify important model parameters, such as the choice of objective function, the temperatures of the thermal reservoirs, the heat transfer rates and the available electrical energy. By using the topology optimization approach, we demonstrate that the cooling power and efficiency of thermoelectric coolers can be improved by 48.7% and 11.4%, respectively, compared to optimization results from in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.