Abstract

The perturbation induced by signal frequency is one of the main problems for tracking differentiator design, and classical linear differentiators are usually sensitive to signal frequency. An improved second-order sliding mode nonlinear tracking differentiator is proposed in this paper using Lyapunov stability theory, considering the robustness of sliding mode control theory. This tracking differentiator can track and differentiate any signal. At the same time it has a simple form and is easy to be applied. A numerical simulation is presented for the linear tracking differentiator and the nonlinear tracking differentiator with different input signals, and results verified the effectiveness of the second order sliding mode tracking differentiator. A method to eliminate perturbation caused by noise is presented at the end of this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.