Abstract
ABSTRACTIn this paper, we addressed the problem of stability analysis for a class of generalised mixed delayed neural networks by delay-partitioning approach. A novel integral inequality is developed by employing Wirtinger's integral inequality and Leibniz–Newton formula. By constructing an augmented Lyapunov–Krasovskii functional with triple and quadruple integral terms and using some standard integral inequality techniques, asymptotic stability criterion is obtained to the concerned neural networks. By converting the sampling period into a bounded time-varying delays, the error dynamics of the considered generalised neural networks are derived in terms of a dynamic system with sampling. Finally, numerical examples are given to show that the proposed method is less conservative than existing ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.