Abstract
In this study, we explore the combination of two well defined topics in fuzzy systems research: fuzzy rule based systems, and information granulation. Rule based systems are a powerful and well-studied form of knowledge representation, due to their approximation abilities and interpretability. In recent years, these types of systems have become increasingly powerful with regards to modeling accuracy; however, many of these improvements come at the cost of model interpretability. This recent direction of research has left an unexplored avenue towards the generation of increasingly interpretable fuzzy rule based models, which we intend to explore. Information granulation is a relatively new, yet very promising area of research in human centric systems. As a form of knowledge representation, information granulation is very well suited to fuzzy rule based systems, where rules represent linguistic quantities in a, intuitively understandable format. It is notable that the combination of these two concepts has been left largely unstudied. We aim to explore this union by defining a methodology for the construction of a partially granular fuzzy rule based model. The aim of this novel model format is to provide a first step in the improvement of fuzzy model interpretability, through the use of information granulation. We are additionally interested in studying new ways of generating fuzzy rules; hence, we will also look at the use of hierarchical clustering as a potential alternative to the tried and tested Fuzzy C Means clustering algorithm. The models created using hierarchical clustering are then compared with those generated using Fuzzy C Means to evaluate the effectiveness of this algorithm. As a result of these experiments, we demonstrate that partially granular fuzzy rules are capable of providing a significant improvement to fuzzy rule interpretability, and we believe that granular fuzzy models present an exciting avenue of future research in human centric systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.