Abstract

AbstractThis paper investigates the robust design of nonlinear model predictive control (NMPC) laws that employ approximated models, derived directly from process input‐output data. In particular, a nonlinear set membership (NSM) identification technique is used to obtain a system model and a bound of the related uncertainty. The latter is used to carry out a robust control design, via a min‐max formulation of the optimal control problem underlying the NMPC methodology. A numerical example with a nonlinear oscillator shows the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call