Abstract

In this paper, a two-dimensional (2D) composite fuzzy iterative learning control (ILC) scheme for nonlinear batch processes is proposed. By employing the local-sector nonlinearity method, the nonlinear batch process is represented by a 2D uncertain T-S fuzzy model with non-repetitive disturbances. Then, the feedback control is integrated with the ILC scheme to be investigated under the constructed model. Sufficient conditions for robust asymptotic stability and 2D $ H_\infty $ performance requirements of the resulting closed-loop fuzzy system are established based on Lyapunov functions and some matrix transformation techniques. Furthermore, the corresponding controller gains can be derived from a set of linear matrix inequalities (LMIs). Finally, simulations on the three-tank system and the highly nonlinear continuous stirred tank reactor (CSTR) are carried out to prove the feasibility and efficiency of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call