Abstract
AbstractSuperhigh‐water backfill mining can mitigate rockburst risks in rockburst‐prone deep coal mines and reduce pollution caused by traditional cemented paste backfill. In this mining method, the width of the rib pillar between two longwall panels is important to maintain roadway stability, prevent rockbursts and water seepage. To design the width of rib pillars, this study firstly established a T‐shaped overlying strata structure model and analyzed source of stress that caused deformation of the T‐shaped model. Based on this model, the abutment stress in the rib pillar was determined. Then, the criterion for overall burst instability of the rib pillar was proposed according to the derived abutment stress. The limit equilibrium theory was applied to obtain the pillar plasticity which can be used as the criterion for water‐seepage prevention. The proposed approach was used to design the width of a rib pillar in Yineng Coalmine located in Shandong Province, China. The analysis of the microseismic monitoring results and borehole drill cuttings show that the designed rib pillar with a width of 10 m was stable without water seepage during mining, indicating the width design method proposed in this study is effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.