Abstract

In the present study modeling of permeability of open-porosity ceramic materials used in non-polarizing electrodes is addressed. The structure of the material filling the electrode determines the infiltration of the ceramic structure by electrolyte, which influences the efficiency of the electrodes. The composition of electrode material was characterized with Scanning Electron Microscope Hitachi S3500N with EDS detector and the structure was determined with use of XRadia XCT400 tomograph . The complex geometry of porous materials has been designed using procedure based on Laguerre-Voronoi tessellations (LVT). A set of porous structures with different geometrical features has been developed using LVT algorithm. The approach used here allows to investigate the influence of geometrical features such pore size variation on the permeability of studied materials. Pressure drop characteristics of the developed structures has been analyzed using finite volume method (FVM). The results show that permeability of porous materials is strongly related with distribution of pore size. The study exhibits the utility of developed design procedure for optimization of non-polarizing electrodes performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.