Abstract

Remotely controlled hydraulic bottle jack was designed in this study to alleviate the difficulties encountered during auto servicing that requires certain choice of elevation. Major components of the hydraulic jack were housed in a metal casing of 220mmx220mmx180mm with 2mm thickness. Curb weight (weight of the car with all fluids and components but without the driver, passengers, and cargo) of several cars ranging from 1086kg-1970kg were determined using a scale at nearby automobile shop. Considering the weight of individual cars that the designed hydraulic jack elevated, the time required to attain upward stroke of the piston and specific height of elevation was recoded accordingly. The time varied between 1.2 minutes with specific height of 150 mm and 1.44 minutes with specific height of 112 mm. Half weight of 1970 kg (985 kg) was used as the load case in Finite Element Analysis (FEA) to check the stress deformations, displacement and equivalent strain. Maximum von-mises stress of 8.465x10 6 N/mm^2 was obtained which is below the yield strength of the jack piston material. Maximum displacement of 2.999x10 -1 mm and maximum equivalent strain of 3.56x10 -3 . Factor of safety was chosen on a scale of 1-10, and the colour chart in the analysis indicated blue colour in the range of 7-10 throughout the jack assembly. This was an indication that the jack is safe to operate under the aforementioned applied load. Therefore, adoption of remotely controlled hydraulic bottle jack can save time and energy required to elevate vehicles to working height.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call