Abstract

This paper presents an innovative approach to design relative trajectories suitable for close-proximity operations in orbit, by assigning high-level constraints regarding their stability, shape and orientation. Specifically, this work is relevant to space mission scenarios, e.g. formation flying, on-orbit servicing, and active debris removal, which involve either the presence of two spacecraft carrying out coordinated maneuvers, or a servicing/recovery spacecraft (chaser) performing monitoring, rendezvous and docking with respect to another space object (target). In the above-mentioned scenarios, an important aspect is the capability of reducing collision risks and of providing robust and accurate relative navigation solutions. To this aim, the proposed approach exploits a relative motion model relevant to two-satellite formations, and developed in mean orbit parameters, which takes the perturbation effect due to secular Earth oblateness, as well as the motion of the target along a small-eccentricity orbit, into account. This model is used to design trajectories which ensure safe relative motion, to minimize collision risks and relax control requirements, providing at the same time favorable conditions, in terms of target-chaser relative observation geometry for pose determination and relative navigation with passive or active electro-optical sensors on board the chaser. Specifically, three design strategies are proposed in the context of a space target monitoring scenario, considering as design cases both operational spacecraft and debris, characterized by highly variable shape, size and absolute rotational dynamics. The effectiveness of the proposed design approach in providing favorable observation conditions for target-chaser relative pose estimation is demonstrated within a simulation environment which reproduces the designed target-chaser relative trajectory, the operation of an active LIDAR installed on board the chaser, and pose estimation algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.