Abstract

The design of two-dimensional (2-D) filter banks yielding orthogonality and linear-phase filters and generating regular wavelet bases is a difficult task involving the algebraic properties of multivariate polynomials. Using cascade forms implies dealing with nonlinear optimization. We turn the issue of optimizing the orthogonal linear-phase cascade from Kovacevic and Vetterli (1992) into a polynomial problem and solve it using Grobner basis techniques and computer algebra. This leads to a complete description of maximally flat wavelets among the orthogonal linear-phase family proposed by Kovacevic and Vetterli. We obtain up to five degrees of flatness for a 16/spl times/16 filter bank, whose Sobolev exponent is 2.11, making this wavelet the most regular orthogonal linear-phase nonseparable wavelet to the authors' knowledge,.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.