Abstract
Refractory multi-principal-element alloys (RMPEAs) exhibit high specific strength at elevated temperatures (T). However, current RMPEAs lack a balance of room-temperature (RT) ductility, high-T strength, and high-T creep resistance. Using density-functional theory methods, we scanned composition space using four criteria: (1) formation energies for operational stability: -150le {E}_{{rm {f}}} ≤ +70 meV per atom; (2) higher strength found via interstitial electron density with Young’s moduli E > 250 GPa; (3) inverse Pugh ratio for ductility: G/B < 0.57; and (4) high melting points: Tm > 2500 °C. Using rapid bulk alloy synthesis and characterization, we validated theory and down-selected promising alloy compositions and discovered Mo72.3W12.8Ta10.0Ti2.5Zr2.5 having well-balanced RT and high-T mechanical properties. This alloy has comparable high-T compressive strength to well-known MoNbTaW but is more ductile and more creep resistant. It is also superior to a commercial Mo-based refractory alloy and a nickel-based superalloy (Haynes-282) with improved high-T tensile strength and creep resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.