Abstract
This paper designs two kinds of recursive least-squares Wiener fixed-point smoothers based on an innovation approach in linear discrete-time stochastic systems. It is assumed that the signal is observed with additive white noise. The proposed fixed-point smoothers require the information of the observation matrix, the system matrix for the state variable, related with the signal, the variance of the state variable, the cross-variance function of the state variable with the observed value and the variance of the white observation noise.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.