Abstract

The high Impedance Technique has emerged as a modern approach for high-gain microstrip antennas. A high impedance surface minimizes surface waves and provides increased gain. Instead of, a typical mushroom to design High Impedance Surface (HIS), fractal geometry can be used. Hilbert curve-based Fractal geometry minimizes physical length and keeps electrical length the same. In this work, three iterations of Hilbert curve-shaped HIS geometry are studied with emphasis on HIS application. Fractal facilitates multi-frequency operation from GSM 1800 MHz to 6 GHz Wireless applications. The antennas have a peak gain of 5.3 dbi. The simulation is conducted in HFSS, and the analysis is performed using reports like reflection coefficients, radiation patterns, and gain plots

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.