Abstract

We use Monte Carlo simulations to model the formation of random copolymers with tunable monomer sequence distributions. Our scheme is based on the original idea proposed a few years ago by Khokhlov and Khalatur [Physica A 249, 253 (1998); Phys. Rev. Lett. 82, 3456 (1999)], who showed that the distribution of species B in A-B random copolymers can be regulated by (a) adjusting the coil size of a homopolymer A and (b) chemically modifying ("coloring") monomers that reside at (or close to) the periphery of the coil with species B. In contrast to Khokhlov and Khalatur's work, who modeled the polymer modification by performing the coloring instantaneously, we let the chemical coloring reaction progress over time using computer simulations. We show that similar to Khokhlov and Khalatur's work, the blockiness (i.e., number of consecutive monomers) of the B species along the A-B copolymer increases with increasing degree of collapse of the parent homopolymer A. A simple analysis of the A-B monomer sequences in the copolymers reveals that monomer sequence distributions in homopolymers "colored" under collapsed conformations possess certain degrees of self-similarity, while there is no correlation found among the monomer sequence distributions formed by coloring homopolymers with expanded conformations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call