Abstract

Quasi-phase-matching (QPM) makes it possible to design domain engineered nonlinear crystals for highly efficient and multitasking nonlinear frequency conversion. However, finding the optimal crystal domain arrangement in a meaningful time is very challenging sometimes impossible by classical computing. In this paper, we proposed a quantum annealing computing method and used D-Wave superconducting quantum computer to design aperiodically poled lithium niobate (APPLN) for coupled third harmonic generation (CTHG). We converted the optical transformation efficiency function to an Ising model which can be solved by D-Wave quantum computer. The crystal design results were simulated by using nonlinear envelope equation (NEE), which showed very similar conversion efficiencies to the crystals designed by using simulated annealing (SA) method, demonstrating that quantum annealing computing is a powerful method for QPM crystal design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.