Abstract

AbstractA method for constructing the exact quadratures for Müntz and Müntz‐logarithmic polynomials is presented. The algorithm does permit to anticipate the precision (machine precision) of the numerical integration of Müntz‐logarithmic polynomials in terms of the number of Gauss–Legendre (GL) quadrature samples and monomial transformation order. To investigate in depth the properties of classical GL quadrature, we present new optimal asymptotic estimates for the remainder. In boundary element integrals this quadrature rule can be applied to evaluate singular functions with end‐point singularity, singular kernel as well as smooth functions. The method is numerically stable, efficient, easy to be implemented. The rule has been fully tested and several numerical examples are included. The proposed quadrature method is more efficient in run‐time evaluation than the existing methods for Müntz polynomials. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.