Abstract

This paper presents the design of a cost-effective and efficient solar powered irrigation pump utilizing a switched reluctance motor (SRM). It utilizes a simple DC-DC boost converter as a power conditioning stage between SPV array and the motor drive. The control of solar photovoltaic (SPV) array output power at maximum power point (MPP) and facilitating the soft-starting to the SRM drive, are two prime functions of the boost converter. The use of a 4-phase SRM drive minimizes the torque ripple and increases the number of strokes without incrementing the number of rotor poles. The low number of switches in a mid-point converter used to energize SRM phases further enhances the performance of the system. The speed control of the motor using the pulse width modulation (PWM) switching of split-capacitor converter eliminates the requirement of additional sensors on the motor to control its speed. The proposed water pumping system is designed, modeled and its performance is simulated on MATLAB/Simulink platform and its responses are analyzed, under the varying environmental conditions, which authenticate its appropriateness as an irrigation pump.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.