Abstract

It has been demonstrated experimentally that pulsed pumping can significantly improve thermal management, thus upgrade the output power of an optically pumped semiconductor disk laser (SDL). The transient heat conduction equation is solved by the use of the finite element method, and the maximum temperature rise of the active region in an InGaAs quantum well SDL under pulsed pumping is focused. Based on the numerical results, the influences of width, repetition rate, and shape of pump pulses on the maximum temperature rise are discussed, the optimized design of width, repetition rate, and shape of pump pulses are concluded, and the theoretical results are in good agreement with the reported experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.