Abstract
Customer-focused and concurrent engineering service systems process tasks more effectively as a result of the power of collaboration among multiple participants. In such environments, however, complex situations might arise that require decisions beyond simple coordination.Task Administration Protocols (TAPs) are designed as a control mechanism to manage complex situations in collaborative task environments. This article presents the design of TAPs for collaborative production systems in which tasks are performed by the collaboration of multiple agents. Three component protocols are found to constitute TAPs and are triggered at appropriate stages in task administration: 1) Task Requirement Analysis Protocol, 2) Shared Resource Allocation Protocol, and 3) Synchronization & Time-Out Protocol. A case study with TAPs metrics for task allocation in a collaborative production system is investigated to compare performance under TAPs, and under a non-TAP coordination protocol (which is considered to be simpler). In terms of task allocation ratio, the case study indicates that performance under TAPs is significantly better (up to 10.6%) than under the non-TAP coordination protocol, especially under medium or high load conditions. The advantage of TAPs can be explained by their design with relatively higher level of collaborative intelligence, addressing more complex control logic compared with non-TAP coordination protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computers Communications & Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.