Abstract

Protein conformational switches are ubiquitous in nature and often regulate key biological processes. To design new proteins that can switch conformation, protein designers have focused on the two key components of protein switches: the amino acid sequence must be compatible with the multiple target states and there must be a mechanism for perturbing the relative stability of these states. Proteins have been designed that can switch between folded and disordered states, between distinct folded states and between different aggregation states. A variety of trigger mechanisms have been used, including pH shifts, post-translational modification and ligand binding. Recently, computational protein design methods have been applied to switch design. These include algorithms for designing novel ligand-binding sites and simultaneously optimizing a sequence for multiple target structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call