Abstract

In a previous study, we synthesized endocyclic enone jasmonate derivatives that function as anti-inflammatory and PPAR-γ-activating entities by using key functional moieties of anti-inflammatory algal metabolites. Herein, we designed additional derivatives containing an exocyclic enone moiety that resembles the key structure of the natural PPAR-γ ligand, 15-deoxy-Δ12, 14-prostaglandin J2 (15 d-PGJ2). The exocyclic enone moiety of 15 d-PGJ2 is essential for covalent bonding with the Cys285 residue in the PPAR-γ ligand-binding domain (LBD). In silico analysis of the designed compounds indicated that they may form hydrogen bonds with key amino acid residues in the PPAR-γ LBD, and thus, secure a position in the bioactive cavity in a similar fashion as does rosiglitazone and 15 d-PGJ2. By a luciferase reporter assay on rat liver Ac2F cells, the synthesized compounds were evaluated for PPAR-γ transcriptional activity. The differential PPAR-γ transcriptional activities of the geometric and enantiomeric isomers of the selected analog were also evaluated; based on our results, the enantiopure compound (+)-(R,E)-6a1 was suggested as a potential PPAR-γ ligand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call