Abstract

We investigated the design of a beam transport line connecting the post linac to the driver linac (P2DT) in the Rare Isotope Accelerator (RAON). P2DT beam line is designed by 180° bending scheme to send the radioactive isotope separation on-line (ISOL) beams accelerated in the Linac-3 to Linac-2. The beam line is designed as a 180° bend for the transport of a multi-charge state (132)Sn(+45,+46,+47) beam. We used the TRACE 3-D, TRACK, and ORBIT codes to design the optics system, which also includes two bunchers and ten sextupole magnets for chromaticity compensation. The transverse emittance growth is minimized by adopting mirror symmetric optics and by correcting second-order aberrations using sextupoles. We report on the multi-charge state beam transport performance of the designed beam line. The main characteristics of the P2DT line are to minimize beam loss and the growth of emittance, and for charge stripping. Beam optics for P2DT is optimized for reducing beam loss and charge stripping. As Linac-3 may accelerate the stable beam and radioactive beam simultaneously, P2DT line also transports the stable beam and radioactive beam simultaneously. Thus, we need a RF switchyard to send the stable beam to the ISOL target and the radioactive beam to the high-energy experimental area in Linac-2 end.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.