Abstract
With the development of optical communication, especially the wide applications of dense wavelength division multiplexing (DWDM) technology, all-optical communication is attracting more and more attention. Wavelength selective switch (WSS) is a new technology, which has the advantage of free switching of individual wavelength. The wavelength division devices play an important role in above mentioned optical communication system. Holographic gratings is one kind of DWDM device, which are characterized by dispersion, high diffraction efficiency and polarization-insensitive. Nowadays, holographic gratings have been widely used in optical communication systems. However, the polarization-insensitive transmission gratings have high aspect ratio structure, which are very hard to transfer the pattern from photoresist mask to substrate (fused silicon). In this paper, the aspect ratio is effectively reduced by adopting LaK9 as substrate with a high index of refraction relatively. The structure parameters of polarization-insensitive gratings should be designed and optimized, such as period, duty cycle and depth. The diffraction efficiency under TE polarization mode and TM polarization mode was discussed respectively in detail in this paper. At the same time, the bandwidth of the designed gratings is discussed. As a result, a proper gratings were designed with high diffraction efficiency (>90%) under TE polarization mode and TM polarization mode, which could be applied in optical communication. The ion etching difficulty is eased by reducing the aspect ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.