Abstract
The high diffraction efficiency and high dispersion ability of diffraction grating plays a very important role in laser systems. Fused-silica transmission gratings not only have board band, high diffraction efficiency and high damage threshold, but also have the advantage of light path without shelter comparing to reflective gratings. In this paper, the study of polarization-independent transmission fused-silica grating is carried out, and the influence of rectangular and trapezoidal grating microstructures on the -1st diffraction efficiency of grating is analyzed. For trapezoidal groove structure, in the range of 80 to 90 degrees, the distributions of diffraction efficiency at different bottom angle are calculated and analyzed. The structure parameters of the grating are optimized by rigorous coupled wave theory. The designed grating groove density is 1440 lines/mm. The -1st diffraction efficiency of the grating is over 96% for both of TE and TM polarized waves at the Littrow angle (49.7 degrees) with the center wavelength of 1060nm. Within the bandwidth of 42nm (from 1039 to 1081nm), the -1st diffraction efficiency of the designed grating is theoretically greater than 90% for both of TE and TM polarized waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.