Abstract

A novel polarization independent InGaAs/InGaAlAs quantum well (QW) structure in the 1.55 μm wavelength region is proposed. A coupled QW structure with tensile strain in the QW and/or barrier region is considered for the reduction of the optical gain difference between TE and TM modes in the wide spectral range. A triple-coupled QW structure with alternative strain (tensile/compressive/tensile) is found to be the most effective in reducing the polarization gain difference. This is because the transition strength difference of each polarization is reduced by energy states coupling. The optimized triple-coupled QW structure shows polarization independence for wide carrier density and wavelength range, which is suitable for polarization independent operation of QW based semiconductor devices, such as semiconductor optical amplifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.